
Determining Ambiguity Classes for Part-of-Speech
Tagging

Markus Dickinson
Indiana University

1021 E. Third Street
Bloomington, IN 47405

md7@indiana.edu

Abstract
We examine how words group together in the
lexicon, in terms of ambiguity classes, and use
this information in a redefined tagset to improve
POS tagging. In light of errors in the training
data and a limited amount of annotated data, we
investigate ways to define ambiguity classes for
words which consider the lexicon as a whole and
predict unknown uses of words. Fitting words
to typical ambiguity classes is shown to provide
more accurate ambiguity classes for words and
to significantly improve tagging performance.

Keywords

Part-of-speech tagging, Corpus annotation

1 Introduction

From one perspective, part of speech (POS) tagging
is a task which attempts to assign a morphosyntactic
label to each token in a text. From another, it is an
attempt to say which word instances belong to the
same class, i.e., function in the same way. The effect of
this is that a tag serves to group word types together;
thus, a tag can be thought of as shorthand for a set of
words [5, 23]. Depending on the tagset, these word sets
can be disparate; a set may contain words which are all
adjectives, but some are only predicative, while some
take obligatory complements. Viewed in this way, we
can ask whether the POS tags in a tagset actually
capture the relevant distinctions.

If the same POS tag for one collection of words be-
haves differently than for another, the tagset can be
redefined to improve tagging (cf. [15]), given that the
success of a tagger depends in part on what distinc-
tions it learns [11, 14]. Because tags represent sets
of words, to redefine a tagset, one can examine the
regularities in the lexicon, in order to see whether the
collections of words are appropriately grouped.

The regularities we focus on involve which ambigu-
ity class to assign to a word, i.e., the set of “possible”
tags. Ambiguity classes capture the distinctions which
make tagging non-trivial. Pinpointing the most promi-
nent classes to be disambiguated groups words with
the same difficulties together and places the focus on
the approximately 3% of tagging cases which a tagger
gets wrong and which affect parsing (cf. [17, 10, 6]).

To determine a word’s ambiguity class, it seems like
we can simply extract it from the data, but this is
problematic. First, because of errors in the annotated
training data, a word might have too many “possible”
tags, some of which are impossible. Secondly, with
limited annotated data, many possible tags are never
observed. Finally, even if we had sufficient error-free
data, some tags are still quite rare and not completely
indicative of a word. A word can mostly pattern like
other words, but with some exceptions. Thus, deter-
mining what class a word belongs to becomes an issue
of primary importance and the focus of this paper.
This is a relevant issue not only for complete disam-
biguation, but also for multi-tagging tasks, where a
word may have more than one tag (e.g., [6]).

We here investigate grouping words by ambiguity
classes in the context of POS tagging, and we use a
notion of typicality to overcome the three problems
outlined above. Typical ambiguity classes model the
regularities, ignoring the exceptions; new tags are pre-
dicted based on a word’s similarity to a typical class;
and tags which are atypical may be erroneous. Our
starting point is a method of tagset modification for
POS annotation error correction, described in sec-
tion 2, since it uses ambiguity classes to deal with dif-
ficult tagging cases. In section 3, we turn to our POS
tagging model: after filtering tags in section 3.1, we de-
scribe how to identify typical ambiguity classes in sec-
tion 3.2 and subsequently merge classes in section 3.3,
thereby predicting unknown uses of tags. For each
step, we witness a gradual improvement in tagging ac-
curacy, resulting in significant improvement. This is
achieved despite basing the changes on information in
the lexicon and not on contextual information.

2 Tagset modification

Using a modified tagset to deal with common ambigu-
ities, Dickinson [12] develops a tagging method to cor-
rect POS annotation errors. Influenced by the “confus-
ing parts of speech,” or “difficult tagging distinctions,”
in POS annotation guidelines [21], the method is based
on the idea that knowing the problematic distinction
for a given corpus position can assist in tagging it.

The crucial insight is that the guideline diagnostics
used, in the case of the Penn Treebank [16], to tell,
e.g., RP (particle) from IN (preposition) are not the
same as the ones used to tell RP from RB (adverb).
These RP uses have differences in distribution based



on which distinction is involved, and thus the set of
RP words can be subgrouped.

To do this, the tagset is altered while training, re-
placing each relevant tag with a complex ambiguity tag,
indicating that word’s ambiguity class and the tag at
that corpus position. At a given corpus position, a
word is given a complex ambiguity tag if it applies;
otherwise, it retains its simple tag. This tag-splitting
method (cf. [1]) results in examples like (1a) becom-
ing (1b) in the Wall Street Journal (WSJ) part of the
Penn Treebank 3.

(1) a. ago/RB
b. ago/<IN/RB,RB>

Two constraints are used to determine the distinc-
tions, or ambiguity classes, for words. First, low-
frequency tags are filtered from consideration for an
ambiguity class, in order to deal with some errors. For
example, an uses the simple tag DT (determiner) in-
stead tags with the class COMMA/DT because the
comma tag only occurs once out of 4211 times. Sec-
ondly, only the ambiguity classes for the positions
flagged by an error detection phase [13] are consid-
ered. Thus, a variation between JJ (adjective) and
PRP (personal pronoun) for ours is not put into the
model because such a variation never occurs for errors.

3 Selecting ambiguity classes

We choose to adapt this framework for POS tagging
work since the emphasis on ambiguity classes finds reg-
ularities beyond the distinctions in the tagset. POS
tagging, however, differs in crucial ways from error
correction. First, training data and testing data are
disjoint for tagging, whereas they are identical for er-
ror correction (i.e., the entire corpus is used for both),
forcing us to consider unknown uses of words in ambi-
guity class assignment. Secondly, whereas automatic
correction focuses only on positions flagged as poten-
tial errors, POS tagging is for an entire text, giving a
large number of distinctions. In assigning ambiguity
classes for POS tagging, therefore, we need new crite-
ria to determine what words group together. Instead
of asking whether it is involved in an error, we sug-
gest typicality as a criterion for the relevance of an
ambiguity class: is it a common distinction?

Following Toutanova et al. [25], we use the WSJ cor-
pus merged data, sections 00-18 for training, sections
19-21 for development, and sections 22-24 for testing.
All tagset modification is done to training data only,
and tags are mapped back to Penn Treebank tags for
evaluating tagger precision (see section 4.2).

We could assign ambiguity classes based on all possi-
ble tags for a word (cf. [7]), but this will not generalize
well. The problem is that this method results in too
many specific classes, which serves to isolate words in
the lexicon. With 280 ambiguity classes and 887 total
tags, we find unique classes like JJ/JJR/RB/RBR/VB
for the word further. To better group words together,
we need to limit what ambiguity classes are possible.

In fact, we observe that adding data makes this
problem worse. We cumulatively calculated the set of
ambiguity classes in the corpus, section by section, as

shown in figure 1. The set of ambiguity classes grows
indefinitely, albeit slowly. As more and more instances
are added to the corpus, there is a greater tendency for
rare cases to emerge and for errors to be introduced.

100

150

200

250

300

350

0 5 10 15 20 25

N
um

be
r 

of
 A

m
bi

gu
ity

 C
la

ss
es

WSJ Sections

Original

Fig. 1: Growth rate of ambiguity classes

Our task thus becomes one of restricting the ambi-
guity class for each word. We find that restrictions
specific to an individual word (e.g., filtering) are insuf-
ficient (section 3.1), requiring global restrictions which
consider the lexicon as a whole (section 3.2). Fitting
words to these global, typical classes indicates which
unseen tags are appropriate (section 3.3).

3.1 Filtering

The first restriction directly addresses the problems of
erroneous tags and low-frequency tags that are not
indicative of a word by filtering out tags occurring
less than 10% of the time for a word (cf. [9]). As
an example of how this handles errors, instead of
CD/DT/JJ/NN/NNP/VBP for the—which has five
erroneous tags—we have only the correct DT. As an
example of a non-indicative tag, the word all varies
between DT, PDT (predeterminer), and RB, but RB
accounts for 3.7% of the cases (38/1017); after filter-
ing, we obtain DT/PDT. It is not that RB is wrong; it
is that DT and PDT are its most prototypical uses and
by restricting our focus to only DT and PDT, we are
able to group all with its capitalized form All. Thus,
all now has three possible tags: <DT/PDT,DT>,
<DT/PDT,PDT>, and RB.

This tagging model uses 155 ambiguity classes, but
two problems remain. First, we still have some highly
specific classes; many words with similarities to other
words pattern only like themselves. For instance,
Put (which only appears 17 times) is alone in having
the ambiguity class JJ/NN/VB/VBD/VBN. Further-
more, many classes seem ad hoc; ambiguity classes like
$/NNP (for the token C ) are not problematic varia-
tions for annotators [21]. Secondly, it is not clear how
filtering by itself is a sufficient test of indicativeness.



3.2 Identifying typical tag classes

Filtering is a local task, but to evaluate whether a
word’s ambiguity class captures a true regularity, i.e.,
is like others, we need to consider the whole lexicon.
Since we want to capture regularities—i.e., repeated
uses of the same class—we use a frequency-based cri-
terion, to determine if an ambiguity class is typical.

For this (Typical) model, after filtering tags, we keep
only the ambiguity classes with more than n tokens,
where n is empirically determined. So, a class such as
JJ/RB, which has 59 word types realized with 5054
tokens, is ranked above NN/NNP (common/proper
noun), with 378 types and 4217 tokens. Such a token-
based measure best reflects the prevalent patterns in
the training corpus (i.e., the typical classes) and which
decisions the tagger sees repeatedly. For the remainder
of this discussion, we will use the model with n equal
to 400, which uses 38 ambiguity classes (see section 4
for a comparison of different values of n).

As a side effect, we discover that some regularities
are word-specific; in other words, some classes are es-
sentially lexicalized. For example, that is the only
DT/IN/WDT word, with 7699 tokens, and thus tag-
ging an item as <DT/IN/WDT,DT> is the same as
tagging it <that,DT>. Others have shown such lex-
icalization to be useful in tagging (e.g., [20]). Our
approach differs by automatically finding words which
do not pattern with any others, and because we fil-
ter out non-indicative tags, there is a slight difference
between our “lexicalized” classes and the general no-
tion of lexicalization. Consider the word like, the only
IN/VB word; in our model, it has four possible tags:
<IN/VB,IN>, <IN/VB,VB>, JJ, and VBP. The JJ
and VBP (present tense verb) cases get grouped with
other JJ and VBP cases, instead of receiving the tags
<like,JJ> and <like,VBP>. It patterns uniquely in
being the only word which can be a preposition (IN)
and a verb (VB); the other uses can be grouped with
other corpus instances.

Examining the lexicon This model is an improve-
ment, but it is inadequate. Similar words are often in
different classes. For example, explained is VBD/VBN
(past tense verb/past participle),while classified is
JJ/VBD/VBN and accomplished is JJ/VBN, yet all
seem to have the same possibilities. JJ never appears
in the training data for explained, yet it is a possible
tag. Consider also a word like accepted : it varies be-
tween JJ, VBD, and VBN, yet JJ is only 1 of the 41 oc-
currences, so the ambiguity class becomes VBD/VBN
after filtering. Yet, this instance of JJ is correct (fu-
tures have become an accepted/JJ part of the financial
landscape). In cases like this, it becomes apparent
that basing indicativeness on individual frequency is
inadequate: the tag is neither more nor less indicative
of accepted than VBD or VBN. Many verbs that are
VBD/VBN, whether because of filtering (cf. accepted)
or lack of observation (cf. explained), should also have
JJ as a possible tag.

We thus want some way to predict tags not observed
in the training data and to overcome excessive filter-
ing. The solution seems to be in performing a limited
amount of merging of classes; for example, JJ/VBN,
VBD/VBN, and JJ/VBD/VBN can be combined into

the superset class JJ/VBD/VBN.

3.3 Merging ambiguity classes

After grouping words by typical ambiguity classes,
we then merge classes, based on which tags are pre-
dictable from which other tags (Merge model). To find
the mappings from one ambiguity class into another,
superset class, we calculated the ambiguity class for
every word in a portion of the training data (sections
00-15), and observed which tags are added for each
word in some held-out data (sections 16-18). For ex-
ample, 18 NN/VB word types become NN/VB/VBP
words when adding more data. With 16 sections for
the base set of ambiguity classes, this ensures a rela-
tively stable set of ambiguity classes, and using the
held-out data ensures that we capture the relevant
property: which tag is predictable from an ambigu-
ity class? Once we automatically deduced the map-
pings (e.g., NN/VB 7→ NN/VB/VBP), we use them
to merge ambiguity classes together.

To account for noise and idiosyncratic behavior, we
use a few simple restrictions: 1) The resulting ambi-
guity class must be a typical class. 2) The mapping
occurs for at least two words in the held-out data since
single-occurring mappings are not general. 3) The
class is not very fertile, i.e., does not generate lots of
tag possibilities. Specifically, no more than three other
tags are allowed. 4) Only the highest-ranking mapping
is used. For example, the twice-occurring VB/VBP
7→ IN/VB/VBP is not used because VB/VBP already
has a mapping. With this method, we also merge sin-
gle tags into ambiguity classes—e.g., VB 7→ VB/VBP.
The full set of mappings can be seen in figure 2.

Original New
NNPS NNPS/NNS
VB VB/VBP
VBP VB/VBP
VBD VBD/VBN
VBN VBD/VBN
VBG NN/VBG
VBZ NNS/VBZ
JJ/VBN JJ/VBD/VBN
VBD/VBN JJ/VBD/VBN
NN/VB NN/VB/VBP
NN/VBP NN/VB/VBP
VB/VBP NN/VB/VBP
NNP/NNPS NNP/NNPS/NNS
NNP/NNS NNP/NNPS/NNS

Fig. 2: Mappings for merging classes

This merging serves to counteract some filtering, by
putting some filtered tags back into ambiguity classes.
On the one hand, we filtered JJ from the ambiguity
class for accepted, making it VBD/VBN, because JJ
appears only once out of 41 times. Now, it gets put
back in, making the class JJ/VBD/VBN. On the other
hand, we filtered RBR (comparative adverb) from the
ambiguity class of trimmed, making it VBD/VBN, be-
cause it occurs once out of 15 times: RBR is erroneous,
and it stays out of the ambiguity class. By using a cri-
terion other than frequency, we can begin to separate
errors from rare instances, giving a good first step in



having more selective filtering, instead of simply filter-
ing out low-frequency tags from a tagging model (e.g.,
[9, 22, 4]). This is especially important for methods
which depend upon rare but correct instances [8].

Additionally, we predict tags for words which never
had that tag in the data, but should have. The exam-
ple of trimmed is another case where JJ is appropriate,
and its class becomes JJ/VBD/VBN.

This method of merging can obviously be improved.
We almost definitely will over-generalize since we
do not take morphology or tag distributions into
account—e.g., not all VBD words are also VBN (cf.
went). Still, it is important to remember that these
assignments are currently being used only as an in-
dication of possibilities; in most contexts, we do not
expect VBN to be a legitimate tag for went.

Tag prediction Merged ambiguity classes can now
predict the presence of possible tags for a word be-
cause they may contain tags a word lacks. To add
these tags directly to a tagging model is straightfor-
ward for a tagger with a transparent lexicon. For ev-
ery word with a complex ambiguity class, we add a
count of one for any tag which is predicted to appear
but does not (Merge+). For example, the word cheer
originally varied between NN and VB, with one oc-
currence of each. We now add a count of one for VBP
since NN/VB/VBP is its merged ambiguity class. A
count of one makes the tagger aware that this tag is
possible without making any further claims.

The prediction of unknown tag uses is in the spirit
of Toutanova and Manning [26], who “augmented [a
tag dictionary] so as to capture a few basic systematic
tag regularities that are found in English. Namely, for
regular verbs the -ed form can be either a VBD or
a VBN and similarly the stem form can be either a
VBP or VB.” Our predictions, however, arise from a
data-driven analysis of word groupings, instead of be-
ing hand-encoded. Either way, lexicon augmentation
can be used as a sanity check on filtering noisy data.

4 Evaluation

There are two ways to evaluate the resulting models.
First, to gauge whether the ambiguity classes are cap-
turing true facts about these words, or whether they
are over- or under-generalizing, some degree of quali-
tative analysis is needed. Secondly, to gauge the effec-
tiveness of better groupings in the lexicon, we will see
how the ambiguity classes affect the quality of POS
tagging. This is only one way to use these group-
ings, however; given the confounding factor of being
integrated into an already complicated tagging model,
both kinds of evaluation are important.

4.1 Quality of ambiguity classes

To determine the quality of the ambiguity classes used,
we need a test bed of words with all of their truly
possible tags. Thus, we sampled 100 lexical entries
(from sections 00-18), removed their tags, and hand-
annotated the set of possible tags. To guide this pro-
cess, we first gathered the list of all (unaltered) ambi-
guity classes from the lexicon, so that the annotator

could first mark a word’s most prominent tags and
then consult the list to see which other tags are gen-
eral possibilities.

We then took the entries from the original lexicon
for the 100 words and compared their possible tags to
the hand-created set. We found that 49 words matched
this set, while 51 were missing tags. Thus, we can see
that the task of predicting tags for known words is a
high priority for POS lexicon coverage: over half the
word types are missing at least one tag.

The Merge(+) model, on the other hand, has 39
such undergeneralizations with only one overgeneral-
ization (describes, predicted to be NNS/VBZ instead
of VBZ only), correctly changing words like smile from
NN/VB to NN/VB/VBP and bottling from VBG to
NN/VBG. There were also six cases which were closer
to a correct distribution, even if they were still miss-
ing tags. The word responding, for example, was orig-
inally VBG, but is now NN/VBG; although its com-
plete set of possible tags is JJ/NN/VBG, it is now
improved. With 18 total improved words, we are suc-
cessfully adding more possible tags, without adding
much noise.

4.2 POS tagging results

Having shown that the ambiguity classes are success-
fully capturing the range of a word’s tag possibilities,
we want to test the effectiveness of using them to group
words for POS tagging. Corpus positions are assigned
complex ambiguity tags where appropriate for train-
ing, using the splitting framework from section 2, and
the complex tags are mapped back to their simple tags
for evaluation. Thus, if the tagger assigns ago the tag
<IN/RB,RB>, we map it to RB in order to compare
it against the benchmark.

Development data As a baseline for the develop-
ment data, the default version of the Hidden Markov
Model (HMM) tagger TnT [3] obtains a precision of
96.48%. Using filtering at 10% to assign ambiguity
classes for tag splitting, the tagging model has 96.63%
precision on the development data, showing that a first
pass at using ambiguity classes provides better perfor-
mance.

Testing the different ambiguity class models, we
present the results side-by-side in figure 3. The best
results are for the Merge+ model, with a token cutoff
of 400, giving a precision of 96.71%, an improvement
gained by making fewer, more general classes than
the Typical model and by extrapolating the ambiguity
classes directly to the lexical entries. It is also impor-
tant to note the overall trends: each model slightly
improves upon the previous one, for all cutoff levels.

Testing data After developing the different models,
we ran them on the testing data (sections 22-24 of
the WSJ) for n = 400. As shown in figure 4, we see
the same improvements as with the development data,
demonstrating that the improvements are not specific
to one data set. Using McNemar’s Test [18], the results
for Merge+ are significantly higher (p < .001) than for
the Baseline.



Typical Merge Merge+
n Pre. AC Pre. AC Pre.

100 96.64% 56 96.65% 48 96.68%
200 96.64% 47 96.65% 41 96.69%
300 96.66% 42 96.66% 36 96.70%
400 96.66% 38 96.67% 33 96.71%
500 96.65% 34 96.66% 30 96.70%

Fig. 3: Results on sections 19-21 of the WSJ (Pre. =
precision, AC = number of ambiguity classes)

Model Development Testing
Baseline 96.48% 96.46%
Typical 96.66% 96.65%
Merge 96.67% 96.66%
Merge+ 96.71% 96.70%

Fig. 4: Results on sections 22-24 of the WSJ

We also wanted to see how applicable our models are
to other genres of text. As with better unknown word
tagging, predicting unknown uses of known words mit-
igates the need for more training data, by filling in
some gaps of what has not been observed. Such meth-
ods are potentially more applicable to other genres of
text: tag uses in one genre may not appear in another.
Thus, we tested the models on the Brown corpus part
of the Penn Treebank, as shown in figure 5. Using Mc-
Nemar’s Test, the results for Merge+ are significantly
higher (p < .001) than for the Baseline.

Model Precision
Baseline 94.60%
Typical 94.79%
Merge 94.81%
Merge+ 94.93%

Fig. 5: Results on the Brown corpus

We see the same trends here, showing the methods
developed here improve even on another corpus. The
percentage gain is still somewhat small—0.33% from
Baseline to Merge+—but with a larger corpus, we can
better see the impact of the improvement, obtaining a
reduction of 1550 errors (24,815-23,265).

Discussion The increase in tagging precision, from
96.46% to 96.70% on the testing data, is only 0.24%
and is below the state-of-the-art precision of 97.33%
by Shen et al. [24] on the same data. What is impor-
tant to notice, however, is not the absolute accuracy
of the particular method used here, but that we have
seen significant improvement by examining how words
group in the lexicon. Further, we have improved cov-
erage of the lexicon by fitting words to typical ambigu-
ity classes. This has the potential to make any tagger
better represent possible tags for words.

We have obtained an improvement in performance
without encoding a variety of features or changing
a tagging algorithm. In fact, we have only gener-
alized patterns of tags found across the lexicon; we

have not used any contextual information. The prin-
ciples behind these techniques are applicable to any
tagging method; how they are applied to a tagger de-
pends upon the tagger, however. The tagset alteration
method works with HMMs because there is a direct in-
terpretation of tag splitting and merging, namely that
they correspond to state splitting and merging. For
a decision tree tagger, it might be best to use the
ambiguity classes as nodes in the decision tree (cf.
[17]). Similarly, it is not yet clear how these tech-
niques interact with tagging methods which have their
own smoothing and error correction capabilities.

A criticism of this work might be that it is language-
specific or tagset-specific. In that all languages have
ambiguous words, the claim about language-specificity
has to be empirically determined. However, taggers
which encode highly specific features are language-
specific (and likely tagset-specific). Consider, for ex-
ample, how Toutanova and Manning [26] determine
whether a word is a particle (RP): “the current word is
often used as a particle, and ... there is a verb at most
3 positions to the left, which is ’known’ to have a good
chance of taking the current word as a particle.” This
language-specificity is not altogether a bad thing, as
general tagging algorithms have, at least for English,
seemed to have hit an upper bound, and language-
specific features may be necessary to improve. The ap-
proach outlined here, however, uses no hand-encoded
knowledge and does not increase the complexity of the
tagging algorithm.

As for tagset-specificity, which ambiguity class a
word has is clearly dependent upon the tagset used,
but it is less clear how these methods work with tagsets
having different degrees of ambiguity or capturing dif-
ferent morphosyntactic properties. Modifying these
methods for another tagset could tell us about how its
tags interact and whether a better organization of the
lexicon is needed. Using a corpus with a tagset that
can be mapped to smaller tagsets (see, e.g., [2]) could
more precisely determine the properties which make
this tagset modification successful.

5 Summary and Outlook

We have investigated ways to assign ambiguity classes
to words in order to overcome errors in the training
data and a limited amount of annotated training data,
thereby leading to a more robust lexicon and improve-
ments in POS tagging. In order to make ambiguity
class definitions work: 1) we defined typical ambiguity
classes based on their frequency of occurrence, merging
classes when appropriate; and 2) we made individual
words conform to these classes, by using filtering and
adding missing counts to lexical entries.

A benefit of the method is that it can target words
or ambiguities of interest. After all, classification by
ambiguity classes works well when narrowing in on er-
ror classes. Future work can investigate exactly which
classes are useful for POS tagging and why, specifi-
cally examining whether these more specific tags pro-
vide more informative contexts (cf. [2, 12]). Exper-
imenting on other tagsets and corpora can test the
effects of tagset design [11] and provide feedback on
annotation schemes. This examination can also help



address the rather arbitrary thresholds used for ambi-
guity class selection. Instead, one can attempt to more
robustly cluster words in the lexicon, using not only
lexicon information, but contextual information to dis-
tinguish the ambiguity classes (cf. [23]). Additionally,
given that there are annotation errors in the evalua-
tion data, qualitative analysis of the tagging results is
needed [19].

Aside from continuing to improve the assignment of
ambiguity classes, this work could impact other POS
taggers where an ambiguity class represents a word or
is a feature (e.g., [7, 9]), or where a word is assigned
more than one tag [6]. These methods could also be
adapted for any annotation task using a lexicon.

Acknowledgments Thanks to Adriane Boyd and
Detmar Meurers for comments on an earlier draft and
to Stephanie Dickinson for statistical advising. This
material is based upon work supported by the National
Science Foundation under Grant No. IIS-0623837.

References

[1] T. Brants. Estimating markov model struc-
tures. In Proceedings ICSLP-96, pages 893–896,
Philadelphia, PA, 1996.

[2] T. Brants. Internal and external tagsets in part-
of-speech tagging. In Proceedings of Eurospeech,
Rhodes, Greece, 1997.

[3] T. Brants. TnT – a statistical part-of-speech tag-
ger. In Proceedings of ANLP 2000, pages 224–231,
Seattle, WA, 2000.

[4] E. Brill and M. Pop. Unsupervised learning of
disambiguation rules for part of speech tagging.
In K. W. Church, editor, Natural Language Pro-
cessing Using Very Large Corpora, pages 27–42.
Kluwer Academic Press, Dordrecht, 1999.

[5] A. Clark. Combining distributional and morpho-
logical information for part of speech induction.
In Proceedings of EACL-03, pages 59–66, 2003.

[6] J. R. Curran, S. Clark, and D. Vadas. Multi-
tagging for lexicalized-grammar parsing. In Pro-
ceedings of ACL-06, pages 697–704, 2006.

[7] D. Cutting, J. Kupiec, J. Pedersen, and P. Sibun.
A practical part-of-speech tagger. In Proceedings
of ANLP-92, pages 133–140, Trento, Italy, 1992.

[8] W. Daelemans, A. van den Bosch, and J. Za-
vrel. Forgetting exceptions is harmful in language
learning. Machine Learning, 34:11–41, 1999.

[9] W. Daelemans, J. Zavrel, P. Berck, and S. Gillis.
MBT: A memory-based part of speech tagger-
generator. In Proceedings of VLC-96, pages 14–
27, Copenhagen, 1996.

[10] M. Dalrymple. How much can part of speech tag-
ging help parsing? Natural Language Engineer-
ing, 12(4):373–389, 2006.

[11] H. Déjean. How to evaluate and compare tagsets?
a proposal. In Proceedings of LREC-00, Athens,
2000.

[12] M. Dickinson. From detecting errors to automat-
ically correcting them. In Proceedings of EACL-
06, pages 265–272, Trento, Italy, 2006.

[13] M. Dickinson and W. D. Meurers. Detecting er-
rors in part-of-speech annotation. In Proceedings
of EACL-03, pages 107–114, Budapest, Hungary,
2003.

[14] D. Elworthy. Tagset design and inflected lan-
guages. In Proceedings of the ACL-SIGDAT
Workshop, Dublin, 1995.

[15] A. MacKinlay and T. Baldwin. Pos tagging with a
more informative tagset. In Proceedings of ALTW
2005, pages 40–48, Sydney, Australia, 2005.

[16] M. Marcus, B. Santorini, and M. A.
Marcinkiewicz. Building a large annotated
corpus of English: The Penn Treebank. Compu-
tational Linguistics, 19(2):313–330, 1993.

[17] L. Marquez, L. Padro, and H. Rodriguez. A ma-
chine learning approach to POS tagging. Machine
Learning, 39(1):59–91, 2000.

[18] Q. McNemar. Note on the sampling error of the
difference between correlated proportions. Psy-
chometrika, 12:153–157, 1947.

[19] L. Padro and L. Marquez. On the evaluation and
comparison of taggers: the effect of noise in test-
ing corpora. In Proceedings of COLING/ACL-98,
pages 997–1002, 1998.

[20] F. Pla and A. Molina. Improving part-of-speech
tagging using lexicalized HMMs. Natural Lan-
guage Engineering, 10(2):167–189, 2004.

[21] B. Santorini. Part-of-speech tagging guidelines
for the Penn Treebank project (3rd revision, 2nd
printing). Technical Report MS-CIS-90-47, The
University of Pennsylvania, Philadelphia, PA,
June 1990.

[22] H. Schmid. Part-of-speech tagging with neural
networks. In Proceedings of COLING 94, pages
172–176, Kyoto, Japan, 1994.

[23] H. Schütze. Distributional part-of-speech tag-
ging. In Proceedings of EACL-95, pages 141–148,
Dublin, Ireland, 1995.

[24] L. Shen, G. Satta, and A. K. Joshi. Guided learn-
ing for bidirectional sequence classification. In
Proceedings of ACL-07, pages 760–767, 2007.

[25] K. Toutanova, D. Klein, C. D. Manning, and
Y. Singer. Feature-rich part-of-speech tagging us-
ing a cyclic dependency network. In Proceedings
of HLT-NAACL 2003, pages 252–259, 2003.

[26] K. Toutanova and C. D. Manning. Enriching
the knowledge sources used in a maximum en-
tropy part-of-speech tagger. In Proceedings of
EMNLP/VLC-2000, Hong Kong, 2000.


