
An Investigation into Improving Part-of-Speech Tagging

Markus Dickinson
Department of Linguistics

Georgetown University
mad87@georgetown.edu

Abstract

We develop a method to improve POS
tagging, which attempts to account for
problematic ambiguities by redefining the
tagset. Hand evaluating the tagger-
benchmark disagreements shows us the
profound effect errors have on reported
accuracies, and we also explore the effect
of correcting training data errors. Our re-
sults emphasize the need to focus on par-
ticular tagging problems in evaluation.

1 Introduction

It seems that part-of-speech (POS) tagging has hit a
bit of an upper limit in accuracy; if we compare the
state-of-the-art in 1996, the 96.63% of Ratnaparkhi
(1996), with the current 97.24% (Toutanova et al.,
2003), we find a gain of only 0.61% over ten years.
This seems to support the claim in Church (1992)
that there is an approximate 97% upper bound to tag-
ging. However, as Marquez et al. (2000) point out,
3% error is still one error in roughly every 30 words,
and if the POS processing is input into syntactic
parsing, these errors can propagate to higher lev-
els; as Dalrymple (to appear) points out, correct tag-
ging can reduce parsing ambiguity by 45-50%. Fur-
thermore, as shown by Padro and Marquez (1998),
we do not know a tagger’s true accuracy, due to er-
rors in corpus evaluation data, and so it is not clear
whether we have indeed witnessed a true improve-
ment or not. To address these issues, we can per-
form more manual evaluation, in order to determine

the true increase or decrease in accuracy, and we can
attempt to develop models which specifically deal
with the difficult cases that make up the lingering
3% of tagger-benchmark disagreements.

One way to identify the difficult cases is to ex-
amine the effect of the tagset on the tagger. The
success of a tagger depends on which distinctions
it learns (cf. D́ejean, 2000), and if there is a way to
learn better distinctions on the fly, then tagging al-
gorithms can be improved by learning those distinc-
tions (MacKinlay, 2005), in a way which is indepen-
dent of the learning algorithm involved.

Thus, we here investigate one particular method
for altering a tagset to better reflect problematic dis-
tinctions in the data, and we perform manual, as
well as automatic, evaluation. We base our work
on a method of POS annotation error correction de-
signed to handle problematic distinctions, which we
describe in the section 2 before turning to our POS
tagging model in section 3. Examining the results
as compared to the benchmark, we see overall im-
provement and discuss the improvement of individ-
ual tags. In section 4, however, we investigate how
the interpretation of the results is affected by errors
in the evaluation data and also what impact training
data errors have on the accuracy of particular tags.
Throughout, we emphasize the need for more qual-
itative evaluation to determine how to improve tag-
ging.

2 POS Error Correction

In Dickinson (2006) we develop a tagging method
to correct POS annotation errors, using a modified
tagset instead of a modified tagging algorithm. The



method is based on the idea that knowing the prob-
lematic distinction for a given corpus position can
assist in tagging it.

To describe this method, we need to discuss the
nature of tagging guidelines. Like other part-of-
speech annotation guidelines (e.g., Wynne, 1996),
Santorini (1990) provides a list of “confusing parts
of speech,” or “difficult tagging distinctions” for the
Penn Treebank. For example, the manual discusses
the distinction between preposition (IN) and parti-
cle (RP) and tells annotators what to do in different
situations. In Dickinson (2006) we note that these
difficult tagging distinctions are often the same ones
that are found in detecting errors arising from incon-
sistencies (Dickinson and Meurers, 2003).

The tagging manual gives different diagnostics to
tell the confusing parts of speech apart, such as, “A
word is a particle (RP) rather than a preposition (IN)
... if it can either precede or follow a noun phrase
object” (Santorini, 1990, p. 10). The crucial insight
is that the diagnostics used to tell, for example, RP
from IN are not the same as the ones used to tell RP
from RB (adverb). In other words, these RP uses
have distributional differences based on which dis-
tinction is involved.

To implement this idea, the tagset is altered
while training, replacing each relevant tag with
a complex ambiguity tag, indicating that word’s
ambiguity class and the tag at that corpus posi-
tion. It is essentially a tag-splitting method (cf.
Brants, 1996; Ule, 2003), and it results in exam-
ples like (1a) becoming (1b) in the Wall Street Jour-
nal (WSJ) part of the Penn Treebank 3 (Marcus
et al., 1993). This bears much similarity to cer-
tain of the “syntactically-conditioned modifications
of closed classes” in MacKinlay (2005), such as di-
viding IN into IN-RP ambiguous words and unam-
biguous IN words, but instead of using only one or
two manually-derived splits, we automatically de-
rive a range of distinctions.

(1) a. ago/RB

b. ago/<IN/RB,RB>

A key element of the work in Dickinson (2006)
is in how to assign complex ambiguity tags with-
out greatly increasing the number of parameters. In
other words, what ambiguity class should be as-
signed for each corpus position? Two constraints

are used to create ambiguity classes. First, low-
frequency tags are filtered from consideration for
an ambiguity class. For example,an is assigned
the simple tag DT instead of the complex tag
<COMMA/DT,DT> because the comma tag only
occurs once out of 4211 times. Secondly, only the
ambiguity classes for the positions flagged by an er-
ror detection phase (Dickinson and Meurers, 2003)
are considered. Thus, a variation between JJ (adjec-
tive) and PRP (personal pronoun) forours is not put
into the model because such a variation never occurs
for errors.

3 POS Tagging

We would like to adapt the automatic correction
model for POS tagging since it intentionally focuses
on difficult tagset distinctions and is independent of
the learning algorithm. We have reason to believe
that extending the correction methodology to POS
tagging could result in a better tagging model. The
modified version of the HMM tagger TnT (Brants,
2000) is a better fit to the original corpus (98.49%
similar) than its unmodified counterpart (97.37%).

Furthermore, this model should provide better
distributional statistics. Consider examples (2) and
(3). We see in (2) thatawayvaries between RB (ad-
verb) and RP (particle), and in (3),aboard varies
between RB and IN (preposition). We find that
IN/RB words like aboard cannot takefrom as a
complement in their adverbial (RB) uses (*away
from), and RB/RP words form a natural class:apart,
aside, and away. So, at least for some classes,
tag splitting—e.g., splitting RB into<IN/RB,RB>
and <RB/RP,RB>—will provide better distribu-
tional data.

(2) a. the Cray-3 machine is at least another year
away/RB from a ... prototype

b. ... I will give away/RP the store

(3) a. Saturday ’s crash ... jetliner that killed 132
of the 146 people aboard/RB

b. These are used aboard/IN military heli-
copters

Following Toutanova et al. (2003), we use the
WSJ corpus merged data, sections 00-18 for training
and sections 19-21 for development. Sections 22-24
are reserved for testing, but we have thus far only



experimented on the developmental data. All tagset
modification is done to training data only, and tags
are mapped back to Penn Treebank tags for evalua-
tion. As a baseline, we find that the default version
of the HMM tagger TnT (Brants, 2000) obtains a
precision of 96.48% on the developmental data.

3.1 Applying the correction model

As a first pass, we can simply apply the error correc-
tion method to POS tagging. Namely, in assigning
ambiguity classes, we first filter out tags occurring
less than 0.01 of the time for a word and less than 10
times overall. And then ambiguity classes are used
which are derived from words varying in context,
that is, words that have different annotations with
identical surrounding context (the so-called varia-
tion nuclei of Dickinson and Meurers (2003)). These
ambiguity classes are used in the complex ambiguity
tags in the training data, and if no ambiguity class is
relevant, the word is given a simple tag, i.e., its orig-
inal unaltered tag.

Training on this model and running it on the de-
velopmental data, we find a precision of 96.53%, an
increase of only 0.05%. Simply porting the model
to POS tagging, then, is not very effective.

3.2 Altering the model for tagging

POS tagging differs in crucial ways from error cor-
rection, requiring the algorithm to be adapted. First,
training data and testing data are disjoint for tagging,
whereas they are identical for error correction (i.e.,
the entire corpus is used for both). Secondly, POS
tagging is for an entire text, whereas automatic cor-
rection focuses only on positions flagged by an error
detection method. As a consequence, the error cor-
rection tagging model only uses ambiguity classes
from the flagged positions. In assigning ambiguity
classes for POS tagging, however, we need to em-
phasize large-impact generalizations.

As a first pass, we can assign ambiguity classes
based on all possible tags for a word, obtained from
the training data (cf. Cutting et al., 1992). With this
training model, we see very little increase, obtain-
ing only 96.54% precision. The problem is that this
method results in far too many specific tags. With
887 total tags and 280 distinct ambiguity classes, we
find unique classes like<JJ/JJR/RB/RBR/VB,VB>
for the wordfurther.

Thus, we need to limit what ambiguity classes are
possible for a word, and to that end, we first filter
low-frequency tags from consideration and then fur-
ther restrict our attention to only those classes which
have a large impact. At a given corpus position, any
tag for which an ambiguity class is not applicable is
then given a simple tag.

Determining ambiguity classes In order to limit
the number of tags for an ambiguity class, we
filter out tags occurring less than 10% of the
time for a word. This filtering removes erro-
neous tags and low-frequency tags that are not
indicative of a word. For example, instead
of <CD/DT/JJ/NN/NNP/VBP,DT> for the—which
has five erroneous tags—we have DT. As an ex-
ample of a non-indicative tag, the wordall varies
between DT, PDT, and RB, but RB accounts for
3.7% of the cases (38/1017); after filtering, we ob-
tain DT/PDT and broaden coverage of our ambigu-
ity classes. It is not that RB is wrong; it is just that
by restricting our focus to only DT and PDT, we are
able to groupall with a word likenary in its DT and
PDT uses. To be more explicit,all now has three
possible tags:<DT/PDT,DT>, <DT/PDT,PDT>,
and RB. This tagging model uses 155 ambiguity
classes and gives us 96.63% precision on the devel-
opmental data.

Filtering improves POS tagging, but we still have
some very specific classes and ones which do not fall
under the category of “confusing parts of speech.”
For instance,Put (which only appears 17 times) has
the ambiguity class JJ/NN/VB/VBD/VBN, which
no other word has, and ambiguity classes like $/NNP
(for the tokenC) are not problematic variations for
annotators (Santorini, 1990). Thus, after filtering
tags below the 10% threshold, we then only use the
the classes with the broadest impact. Concretely, we
keep the ambiguity classes with more thann tokens,
wheren is empirically determined. So, a class like
JJ/RB, which has 59 word types realized with 5054
tokens, is ranked above NN/NNP, with 378 word
types and 4217 tokens. Such a token-based measure
reflects decisions the tagger sees repeatedly and thus
guarantees wider coverage. The best result, forn =
400 (hereafterTnT400), is 96.66%, with 38 ambigu-
ity classes, as can be seen in figure 1.

A side effect of this method is that we obtain some



n Precision Classes
100 96.64% 56
200 96.64% 47
300 96.66% 42
400 96.66% 38
500 96.65% 34

1000 96.62% 20

Figure 1: Results on developmental data

classes that are essentially lexicalized, a technique
which others have shown to be useful in tagging
(e.g., Pla and Molina, 2004). For example,that is
the only DT/IN/WDT word, with 7699 tokens, and
thus tagging an item as<DT/IN/WDT,DT> is the
same as tagging it<that,DT>. With a value of 400
for n, seven of the 38 ambiguity classes are lexical-
ized cases, as shown in figure 2.

Word Class
there DT/IN/WDT
over IN/RP
’ ’’ /POS
there EX/RB
no DT/RB
like IN/VB
her PRP/PRP$

Figure 2: Lexicalized classes in TnT400

Because we also filter out non-indicative tags,
there is a slight difference between our “lexicalized”
classes and the notion of lexicalization used by oth-
ers. Consider the wordlike; in our model, it has four
possible tags:<IN/VB,IN>, <IN/VB,VB>, JJ, and
VBP. So, the JJ and VBP cases will get grouped
with other JJ and VBP cases, whereas in a lexical-
ized model, they would receive the tags<like,JJ>
and <like,VBP>. Our hope is to simply let non-
indicative tags be handled by overall corpus infor-
mation. The general advantage of our method is that
we usually have information about broader classes
of words for tagging. For example, when using lex-
icalized features in Ratnaparkhi (1996), the perfor-
mance foraboutgoes down, because of “tagging er-
rors due to inconsistent data” (Ratnaparkhi, 1996, p.
138). In our model,abouthas 16 other IN/RB words
from which to gather information, and we thus hope

to overcome this problem.

Discussion The increase in tagging precision,
from 96.48% to 96.66%, is only an increase of
0.18% and as we will see in section 4, we have
reason to question even this improvement. Further-
more, it is still well below the state-of-the-art pre-
cision of 97.24% by Toutanova et al. (2003) on the
same data. Why, then, should this tagging method
be considered?

There are a few reasons to pursue this line of re-
search. First, the tagset alteration can be applied to
any POS tagging algorithm, and this is a step in im-
proving pre-existing tagging methods by changing
the tagset (cf. MacKinlay, 2005). Given that we kept
the corpus constant, this empirically demonstrates
that the choice of tagset distinctions affects the tag-
ging performance. Even if we have certain external
(linguistic) criteria that need to be maintained in the
corpus, we can realign the tagset (with an unambigu-
ous mapping to the original tagset) to better meet
the internal criterion of effective tagging (cf. Elwor-
thy, 1995; D́ejean, 2000). Future work will go into
applying such methodology to a variety of different
kinds of taggers.

Secondly, this method can target words or ambi-
guities that are of interest and are of particular dif-
ficulty. After all, this framework works well when
narrowing in only on inconsistent errors for error
correction. Future work will have to go into investi-
gating exactly which (kinds of) classes are useful for
POS tagging and why. For example, non-local dis-
tinctions such as that between past tense verb (VBD)
and past participle (VBN) may not benefit from the
complex ambiguity tag methodology.

As a starting point, we can investigate the differ-
ences between the confusions for these two methods.
The the top ten most common types of confusions
(i.e., TnT-benchmark disagreements) for the default
TnT are given in figure 3. In figure 4, the con-
fusion matrix for TnT400 is given, along with the
difference between this model and the TnT model;
cases where tagging performance improved are in
bold (i.e., the number of errors went down, resulting
in a negative difference).

We can see from figures 3 and 4 that TnT400
has different problems and different biases than does
TnT. Looking at the columns where JJ is the origi-



Original TnT Count
NN JJ 436
NN NNP 264
VBD VBN 220
JJ NN 204
VBN VBD 156
IN RB 149
VBN JJ 140
JJ VBN 129
RB RP 127
NNP NNPS 122

Figure 3: Confusions for TnT

Original TnT400 Count Difference
NN JJ 396 -40
JJ NN 246 42
NN NNP 218 -46
VBD VBN 195 -25
VBN VBD 173 17
JJ VBN 163 34
IN RB 149 0
VBP VB 127 16
NNP NNPS 123 1
VBN JJ 111 -29
... ... ...
RB RP 54 -73

Figure 4: Confusions for TnT400

nal tag, for instance, we find that TnT400 has more
erroneous cases than TnT, but less cases when JJ is
the tag it (mis)guessed. In other words, performance
when guessing JJ improved, while tagging NN got
worse. Following Toutanova and Manning (2002)
and MacKinlay (2005), we need to further evaluate
performance on individual classes to see where im-
provements are and adjust the model accordingly.
In Dalrymple (to appear), adjective-noun disagree-
ments accounted for 29.63% of ambiguities between
parses, showing that narrowing in on this tag distinc-
tion, for example, will have an impact on parsing
performance.

Exploring these strengths and weaknesses of the
TnT400 model and why they occur could lead us to
further improve the model. A next step is to train
TnT using only one class at a time to see which
classes are the most effective.

4 The Effect of Errors

It has been mentioned in several places (Dickinson
and Meurers, 2005; Kv̌etǒn and Oliva, 2002; van
Halteren, 2000; Padro and Marquez, 1998) that an-
notation errors are problematic for natural language
processing, and so to fully evaluate the improve-
ments of our tagger, we need to investigate the effect
of errors in the data.

4.1 Evaluation data errors

Since we have kept the corpus data constant for dif-
ferent tagging methods, we can use our results to
illustrate the effect of errors in the evaluation data.
For the output of TnT on the developmental data,
we sampled 100 differences between the benchmark
and the tagged corpus, removed the original tags,
and marked the correct tag, based only on the tag-
ging manual (Santorini, 1990). We then performed
the same procedure for TnT400.

For the TnT400-benchmark differences, we find
that 20 TnT400 “errors” are due to benchmark errors
and 9 are likely correct for both. With the extra 29
correct, we estimate the true accuracy to be as high
as 97.63%, instead of the reported 96.66%.

The TnT-benchmark differences, on the other
hand, turn up 36 benchmark errors correct for TnT
and 7 cases correct for either, giving an estimated
true accuracy of up to 97.99%. Thus, our modifica-



tions actually make the model worse, even though
they appear to make the model better. This lends
empirical evidence to the proof in Padro and Mar-
quez (1998) that a worse tagger may have a better
reported accuracy.

It might seem that we have ignored cases where
the tagger and the corpus are both erroneous in the
same way (i.e., they agree yet are wrong). However,
the corpus error rate is the same for both tagger out-
puts, so the erroneous agreement rate can be factored
out, and the taggers can be truly compared.1 From
this, we can conclude that TnT is a more accurate
tagger than TnT400 on this data. Thus, we can see
that not accounting for such errors can skew our re-
sults, and this leads us to question whether improve-
ments in precision scores are truly tagging improve-
ments and are not just modeling noise.

Future work will have to investigate the exact
nature of the differences between TnT and the
benchmark as compared to the differences between
TnT400 and the benchmark. We expect there to be
particular tags for which our performance has im-
proved with TnT400.

4.2 Training data errors

After noticing the effect of errors in the evaluation
data, we ran one final experiment to probe the effect
of errors in the training data. Instead of (or in ad-
dition to) trying to improve the tagging technology,
maybe we should try improving the quality of the
data to see better performance. If we can correct the
training data, we can compare TnT trained on this
cleaned data with TnT trained on the original data
and see what impact the cleaning of errors has.

Thus, we performed the automatic error detection
and correction procedure from Dickinson (2006) on
the training corpus. This uses the same procedure as
described in section 3.1, except that it is run on the
training data itself, and only the detected positions

1To see this, letdi be the number of disagreements between
taggeri and the benchmark which are benchmark problems
(4634 × 0.45 = 2085.3 for TnT; 4399 × 0.29 = 1275.71 for
TnT400). Further, letci be the number of positions which are
reported to be correct (127,134 for TnT; 127,369 for TnT400).
If e is the number of errors in the data, then all the errors not in
di (or e − di) must be inci. The true number of correct posi-
tions is thus:ci − (e − di) + di = ci − e + 2di. Sincee is
the same for both, we can simply compareci + 2di, wheredi

is estimated from our sample. The value ofci + 2di for TnT is
131,305; for TnT400, it is 129,920.

are kept. This makes 3533 changes to the training
data and ensures a consistent training corpus.

We trained on this modified version of sections 00
through 18 and again ran the tagger (TnTMod) on the
developmental data. We find a precision of 96.46%,
similar to the original TnT precision of 96.48%.

To factor in the evaluation data errors, we again
performed a random selection of 100 TnTMod-
benchmark disagreements. We find that 30 positions
are benchmark errors which TnTMod got right, and
3 more are correct for both. The estimated top ac-
curacy is thus 97.70%, lower than the 97.99% of the
original TnT.

It seems that our result falls in line with that of Os-
borne (2002), wherein NLP technologies—shallow
parsers, in this case—are “surprisingly robust” to
noise in the training data (p. 696). However, we
need to be cautious in making this claim; Květǒn
and Oliva (2002), for example, show that POS tag-
gers are affected by noise in the training data. Addi-
tionally, we have to keep in mind that the correction
model is estimated to be only 73.86% accurate in
its changes (Dickinson, 2006). Thus, our results are
really comparing the original training data, with its
inconsistencies, against training data which is con-
sistent and contains fewer errors. Furthermore, there
is a sampling issue to consider (see below).

In light of the observation in Dalrymple (to ap-
pear) that certain tags are important for reducing
parsing ambiguity, it is important to analyze which
tagging variations change their distribution. Ignor-
ing the randomly-selected data for the moment, we
thus compare confusion matrices between the origi-
nal TnT model and TnTMod, as given in figure 5.

Original TnTMod Count Differences
NN JJ 453 17
NN NNP 247 -17
VBD VBN 231 11
JJ NN 196 -8
IN RB 194 45
VBN VBD 160 4
VBN JJ 141 1
JJ VBN 127 -2
RB RP 126 -1
NNP NNPS 122 0

Figure 5: Confusions for TnTMod



Although most tagging differences are similar, we
see that there is a definite difference between TnT
and TnTMod when it comes to IN/RB variations.
Specifically, TnTMod has 45 more RB disagree-
ments with the benchmark IN than TnT does. We
do not know if this is actually an improvement in
tagging or not—as we mention in Dickinson (2006),
words likeaboutare often incorrectly tagged IN in-
stead of RB in the benchmark corpus. What we can
say at this point is that the quality and consistency
of the training data has a big impact on the accuracy
of IN and RB tags. If these tags are important to a
task, then the quality of data is also important.

Unfortunately, our sample of 100 TnTMod-
benchmark disagreements contains no instances of
IN words tagged by TnTMod as RB, so we cannot
draw any conclusions about the benchmark errors in
this particular distinction. This points to a problem
with randomly sampling 100 positions from any of
the tagger-benchmark disagreements; different tags
have different accuracies, and we might randomly
draw the wrong ones. For example, there are 30
cases in the TnTMod sample which originally had
one of the canonical verb tags (VB, VBP, VBD,
VBN),2 and there are only 18 in the TnT sample.

Examining the change in accuracy of each tag, or
tag ambiguity, is important, but, following Ratna-
parkhi (1996) and others, it is also important to ana-
lyze the distribution of individual words. Namely, in
the future, we will need to compare individual words
(e.g.,about, that) to see if they have a substantial in-
crease or decrease in accuracy.

Additional work in the future includes training the
TnT400 model on the cleaned data, to see whether
we were modeling noise in the training data before
and thus whether consistent training data results in
better complex ambiguity tags. Qualitatively ana-
lyzing this output will show us the properties of the
tagset which are more or less difficult and which
can be overcome by an altered tagset and which by
cleaned data.

5 Summary and Outlook

We have explored a new method for POS tagging,
which alters the tagset by adding complex ambigu-

2VBG is most often confused with JJ, so we do not include
it as a canonical verb tag.

ity tags reflecting each word’s potential ambiguities.
We found a slight improvement for this, but later dis-
covered that this method was less robust to errors
than the original tagger. With this result, we demon-
strated that one must account for errors in the eval-
uation data when comparing taggers, and attention
needs to be given to which individual tags are im-
proved. We also showed that errors in the training
data affect the accuracy of particular tags. We make
two conclusions from this work. 1) We need to focus
on gains for individual tags in POS tagging, and why
they improve. A method able to pinpoint difficult
tags is thus desirable. 2) The effect of benchmark
errors needs continued analysis, in order to gauge
true tagging improvement.

There are several directions in which to take this
work. The tagging methodology worked for error
correction because it focused on particularly prob-
lematic distinctions. Likewise, we can focus on
problematic distinctions in the future by running
the tagger on the training data and deriving classes
which are the most confusing for the tagger.

Another possible approach is to traink differ-
ent models, each one focusing on only one partic-
ular distinction, and then merging the results. This
should provide better contextual data—e.g., if we
are deciding between IN and RB, we want to know
that the previous word is a noun (NN), not that it is
<JJ/NN,NN>. In the process, this will tell us which
distinctions are the most and least useful for tagging.

Once we are able to improve the model further,
then of course, we still have to run it on the testing
data. We would also like to run this on other tag-
gers, given that the methodology is independent of
the underlying tagging algorithm. Additionally, to
gauge whether the method is generally applicable,
other corpora and tagsets need to be used.

Acknowledgments I would like to thank two
anonymous reviewers for their helpful comments.
This material is based upon work supported by the
National Science Foundation under Grant No. IIS-
0623837.

References

Brants, Thorsten (1996). Estimating Markov Model
Structures. InProceedings ICSLP-96. Philadel-
phia, PA, pp. 893–896.



Brants, Thorsten (2000). TnT – A Statistical Part-
of-Speech Tagger. InProceedings of ANLP 2000.
Seattle, WA, pp. 224–231.

Church, Kenneth W. (1992). Current practice in part
of speech tagging and suggestions for the future.
In Simmons (ed.),Sbornik praci: In Honour of
Henry Kǔcera, Michigan Slavic Studies, pp. 13–
48.

Cutting, Doug, Julian Kupiec, Jan Pedersen and
Penelope Sibun (1992). A Practical part-of-
speech tagger. InProceedings of ANLP-92.
Trento, Italy, pp. 133–140.

Dalrymple, Mary (to appear). How much can part of
speech tagging help parsing?Natural Language
Engineering.

Déjean, Herv́e (2000). How to Evaluate and Com-
pare Tagsets? A Proposal. InProceedings of
LREC-00. Athens.

Dickinson, Markus (2006). From Detecting Errors
to Automatically Correcting Them. InProceed-
ings of EACL-06. Trento, Italy, pp. 265–272.

Dickinson, Markus and W. Detmar Meurers (2003).
Detecting Errors in Part-of-Speech Annotation. In
Proceedings of EACL-03. Budapest, Hungary, pp.
107–114.

Dickinson, Markus and W. Detmar Meurers (2005).
Prune Diseased Branches to Get Healthy Trees!
How to Find Erroneous Local Trees in a Treebank
and Why It Matters. InProceedings of TLT 2005.
Barcelona, Spain.

Elworthy, David (1995). Tagset Design and Inflected
Languages. InProceedings of the ACL-SIGDAT
Workshop. Dublin.

Květǒn, Pavel and Karel Oliva (2002). Achiev-
ing an Almost Correct PoS-Tagged Corpus. In
Text, Speech and Dialogue (TSD). Heidelberg:
Springer, no. 2448 in Lecture Notes in Artificial
Intelligence (LNAI), pp. 19–26.

MacKinlay, Andrew (2005). The Effects of Part-of-
Speech Tagsets on Tagger Performance.

Marcus, M., Beatrice Santorini and M. A.
Marcinkiewicz (1993). Building a large annotated
corpus of English: The Penn Treebank.Compu-
tational Linguistics19(2), 313–330.

Marquez, Lluis, Lluis Padro and Horacio Rodriguez
(2000). A Machine Learning Approach to POS
Tagging.Machine Learning39(1), 59–91.

Osborne, Miles (2002). Shallow Parsing using
Noisy and Non-Stationary Training Material. In
JMLR Special Issue on Machine Learning Ap-
proaches to Shallow Parsing, vol. 2, pp. 695–719.

Padro, Lluis and Lluis Marquez (1998). On the
Evaluation and Comparison of Taggers: the Ef-
fect of Noise in Testing Corpora. InProceedings
of COLING/ACL-98. pp. 997–1002.

Pla, Ferran and Antonio Molina (2004). Improving
part-of-speech tagging using lexicalized HMMs.
Natural Language Engineering10(2), 167–189.

Ratnaparkhi, Adwait (1996). A maximum entropy
model part-of-speech tagger. InProceedings of
EMNLP-96. Philadelphia, PA, pp. 133–141.

Santorini, Beatrice (1990).Part-Of-Speech Tagging
Guidelines for the Penn Treebank Project (3rd Re-
vision, 2nd printing). Tech. Rep. MS-CIS-90-47,
The University of Pennsylvania, Philadelphia, PA.

Toutanova, Kristina, Dan Klein, Christopher D.
Manning and Yoram Singer (2003). Feature-Rich
Part-of-Speech Tagging Using a Cyclic Depen-
dency Network. InProceedings of HLT-NAACL
2003. pp. 252–259.

Toutanova, Kristina and Christopher D. Manning
(2002). Enriching the Knowledge Sources Used
in a Maximum Entropy Part-of-Speech Tagger. In
Proceedings of EMNLP/VLC-2000. Hong Kong.

Ule, Tylman (2003). Directed Treebank Refinement
for PCFG Parsing. InProceedings of TLT 2003.
Växjö, Sweden, pp. 177–188.

van Halteren, Hans (2000). The Detection of
Inconsistency in Manually Tagged Text. In
Anne Abeilĺe, Thosten Brants and Hans Uszkoreit
(eds.),Proceedings of LINC-00. Luxembourg.

Wynne, Martin (1996). A Post-Editor’s Guide to
CLAWS7 Tagging. UCREL, Lancaster University,
Lancaster.


